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Abstract—Connecting vehicles to the infrastructure and bene-
fiting from the services provided by the network is one of the main
objectives to increase safety and provide well-being for passen-
gers. Providing such services requires finding suitable gateways
to connect the source vehicles to the infrastructure. The major
feature of using gateways is to decrease the load of the network
infrastructure resources so that each gateway is responsible for a
group of vehicles. Unfortunately, the implementation of this goal
is facing many challenges, including the highly dynamic topology
of VANETs, which causes network instability, and the deployment
of applications with high bandwidth demand that can cause
network congestion, particularly in urban areas with a high-
density vehicle. This work introduces a novel gateway selection
algorithm for vehicular networks in urban areas, consisting of
two phases. The first phase identifies the best gateways among
the deployed vehicles using multi-objective integer programming.
While in the second phase, reinforcement learning is employed to
select a suitable gateway for any vehicular node in need to access
the VANET infrastructure. The proposed model is evaluated and
compared to other existing solutions. The obtained results show
the efficiency of the proposed system in identifying and selecting
the gateways.

Index Terms—VANET, gateway selection, multi-objective inte-
ger programming, reinforcement learning.

I. INTRODUCTION

THE Vehicular Ad Hoc Networks (VANETs) represent
the vital nerve of the Intelligent Transportation System

(ITS) as the research, and industrial communities have become
increasingly interested in developing VANETs [1]. In general,
VANET’s infrastructure consists of vehicles equipped with a
communication device and Road Side Units (RSUs), which
are fixed communication units located near intersections or
distributed on the side of the roads [2], [3]. The communi-
cation in the VANET environment is divided into two types,
namely: Vehicle-to-Vehicles (V2V), which allows the vehicles
to communicate directly, and Vehicle-to-Infrastructure (V2I),
in which the vehicles are able to make contact with the
infrastructure like routers, base stations, and RSUs [4], [2].
The main drive for V2I development is providing the drivers
with the necessary information and assistance to increase
safety and decrease accidents, as well as providing Internet
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access for entertainment [5], [6]. However, with the increasing
growth of greedy Internet applications, providing the Internet
connectivity for vehicular users has become an urgent need,
especially in urban areas. As a consequence, new concepts
have emerged dedicated to this purpose, like Urban Vehicular
Ad Hoc Network (UVANET), which deals with non-safety
applications (Internet service, media sharing, and data sharing)
[7]. Providing the Internet for vehicles requires finding a
suitable gateway. Unfortunately, the implementation of this
goal is facing many challenges. The applications with high
bandwidth demand can cause network congestion, particularly
in urban areas with a high density of vehicles. In addition,
the VANET environment is characterized as a high dynamic
environment because of the high speed of vehicles that connect
or disconnect to the network very frequently, causing unstable
network connections [8].

Gateway selection strategies often rely on inquiry and
solicitation messages sent and received between the vehicular
nodes (VNs) to find a suitable gateway [8]. These kinds of
messages overwhelm the networks and can cause broadcast
storm problems and overhead when the number of nodes
increases [9]. Investing in cloud computing and making it
compatible with ITS, provides a valuable opportunity to
benefit from cloud computing resources utilized by VANET
services [10], [11]. This union produced a new paradigm
called Vehicular Cloud (VC) [12] [13]. VC presents many
services like network information collection, traffic control
optimization, and congestion detection [12]. Because of the
massive services and features provided by VC, we will use
it to build our gateway selection model, so we can reduce
the impact of overhead in the network. The gateways aim to
provide the Internet for vehicles that need it. The identified
gateways are employed to connect the source vehicles to the
infrastructure. The major feature of using the gateways is to
decrease the load of network infrastructure resources. Each
gateway is responsible for a group of vehicles by handling
and multiplexing the traffic amount of the group to send them
to the infrastructure. It should be noted; our proposed system
is the extension of our previous work entitled “Reinforcement
Learning based Gateway Selection in VANETs” . In the
previous work, we assumed that the public transport buses
are equipped with Internet access and can serve as mobile
gateways (MGs) [13]. We used reinforcement learning to select
the best gateway for each vehicle that needs Internet access.
We are now expanding the scope of our work to include
defining the gateways instead of assuming them, and this
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Abstract—Connecting vehicles to the infrastructure and bene-
fiting from the services provided by the network is one of the main
objectives to increase safety and provide well-being for passen-
gers. Providing such services requires finding suitable gateways
to connect the source vehicles to the infrastructure. The major
feature of using gateways is to decrease the load of the network
infrastructure resources so that each gateway is responsible for a
group of vehicles. Unfortunately, the implementation of this goal
is facing many challenges, including the highly dynamic topology
of VANETs, which causes network instability, and the deployment
of applications with high bandwidth demand that can cause
network congestion, particularly in urban areas with a high-
density vehicle. This work introduces a novel gateway selection
algorithm for vehicular networks in urban areas, consisting of
two phases. The first phase identifies the best gateways among
the deployed vehicles using multi-objective integer programming.
While in the second phase, reinforcement learning is employed to
select a suitable gateway for any vehicular node in need to access
the VANET infrastructure. The proposed model is evaluated and
compared to other existing solutions. The obtained results show
the efficiency of the proposed system in identifying and selecting
the gateways.

Index Terms—VANET, gateway selection, multi-objective inte-
ger programming, reinforcement learning.

I. INTRODUCTION

THE Vehicular Ad Hoc Networks (VANETs) represent
the vital nerve of the Intelligent Transportation System

(ITS) as the research, and industrial communities have become
increasingly interested in developing VANETs [1]. In general,
VANET’s infrastructure consists of vehicles equipped with a
communication device and Road Side Units (RSUs), which
are fixed communication units located near intersections or
distributed on the side of the roads [2], [3]. The communi-
cation in the VANET environment is divided into two types,
namely: Vehicle-to-Vehicles (V2V), which allows the vehicles
to communicate directly, and Vehicle-to-Infrastructure (V2I),
in which the vehicles are able to make contact with the
infrastructure like routers, base stations, and RSUs [4], [2].
The main drive for V2I development is providing the drivers
with the necessary information and assistance to increase
safety and decrease accidents, as well as providing Internet

Hasanain Alabbas is with the Department of Networked Systems and Ser-
vices, Faculty of Electrical Engineering and Informatics, Budapest University
of Technology and Economics, Hungary, and Computer Center Department,
Al-Qasim Green University, E-mail: hasanain@hit.bme.hu
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access for entertainment [5], [6]. However, with the increasing
growth of greedy Internet applications, providing the Internet
connectivity for vehicular users has become an urgent need,
especially in urban areas. As a consequence, new concepts
have emerged dedicated to this purpose, like Urban Vehicular
Ad Hoc Network (UVANET), which deals with non-safety
applications (Internet service, media sharing, and data sharing)
[7]. Providing the Internet for vehicles requires finding a
suitable gateway. Unfortunately, the implementation of this
goal is facing many challenges. The applications with high
bandwidth demand can cause network congestion, particularly
in urban areas with a high density of vehicles. In addition,
the VANET environment is characterized as a high dynamic
environment because of the high speed of vehicles that connect
or disconnect to the network very frequently, causing unstable
network connections [8].

Gateway selection strategies often rely on inquiry and
solicitation messages sent and received between the vehicular
nodes (VNs) to find a suitable gateway [8]. These kinds of
messages overwhelm the networks and can cause broadcast
storm problems and overhead when the number of nodes
increases [9]. Investing in cloud computing and making it
compatible with ITS, provides a valuable opportunity to
benefit from cloud computing resources utilized by VANET
services [10], [11]. This union produced a new paradigm
called Vehicular Cloud (VC) [12] [13]. VC presents many
services like network information collection, traffic control
optimization, and congestion detection [12]. Because of the
massive services and features provided by VC, we will use
it to build our gateway selection model, so we can reduce
the impact of overhead in the network. The gateways aim to
provide the Internet for vehicles that need it. The identified
gateways are employed to connect the source vehicles to the
infrastructure. The major feature of using the gateways is to
decrease the load of network infrastructure resources. Each
gateway is responsible for a group of vehicles by handling
and multiplexing the traffic amount of the group to send them
to the infrastructure. It should be noted; our proposed system
is the extension of our previous work entitled “Reinforcement
Learning based Gateway Selection in VANETs” . In the
previous work, we assumed that the public transport buses
are equipped with Internet access and can serve as mobile
gateways (MGs) [13]. We used reinforcement learning to select
the best gateway for each vehicle that needs Internet access.
We are now expanding the scope of our work to include
defining the gateways instead of assuming them, and this
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leads us to find a mechanism to identify the gateways. Our
proposed model now consists of two phases instead of one
phase. For the first phase, we utilized the Multi-Objective
Integer Programming (MO-IP) to define the best gateways in
terms of speed, distance from the base station and geographical
distribution. In the second phase, we adopted reinforcement
learning to find the best gateway for client vehicles.

II. RELATED WORKS

Providing a stable connection to VANET infrastructure
is a considerable challenge because of the highly dynamic
environment. In [14], the authors proposed a gateway selection
strategy to access the information and retrieve the data from
the cloud by using epidemic spread routing (ESR). The content
accessibility preference (CAP) model has been used to confine
the greedy behavior of ESR and minimize the data access
delay. In [15], a fuzzy multi-metric qos-balancing gateway
selection algorithm (FQGwS) was proposed to provide stable
communication and increase the link connectivity duration be-
tween the vehicles and LTE infrastructure. The LTE Advanced
eNodeBs are employed as fixed gateways. The communication
between vehicles and the LTE infrastructure is directly or
via a relay gateway. The fuzzy logic is adopted to select
the best gateways based on a blend of metrics like signal
strength, resources occupation, connection lifetime, and QoS
traffic classes. However, this kind of solution uses the reactive
approach where vehicles exchange messages to discover an
appropriate gateway, thus causing a high amount of overhead.
The authors [16] proposed a routing strategy to provide
Internet access for vehicles by selecting a suitable mobile
gateway. The study utilized the vehicle’s characteristics (speed,
direction, position) to determine the best mobile gateway. On
the other hand, it calculates the trust parameter to determine
if the connection is reliable and secure or not. Driss et
al. [17] proposed a gateway selection algorithm based on
heterogeneous VANET and 4G LTE cellular networks. The
study considered that the vehicles fitted with 4G LTE and
IEEE 802.11p-based-VANETs interfaces are potential mobile
gateways. These possible gateways can provide a reliable
connection with the 4G LTE cellular networks to ordinary
vehicles. The study took into account several factors for the
selection of the mobile gateways, such as signal strength,
vehicles’ movement, and path length.

However, even though these kinds of solutions show good
results in terms of packet delivery when applied in a high-
way scenario, they are not suitable in urban scenarios. The
proactive and reactive strategies used in these algorithms can
decrease the throughput when the vehicle numbers increase.
Moreover, there is no optimization in the selection procedure.

In [18], the authors suggested a new gateway selection
system by using multi-objective optimization to address the
issues generated by the previous studies. The system takes into
consideration two contradicting objectives. The first objective
aims to maximize the number of connected vehicles while the
second one aims to minimize the overload of the gateways.

We present a novel model to identify and select the mobile
gateways using Multi-Objective Integer Programming (MO-
IP) and Reinforcement Learning (RL) in urban scenarios.

III. SYSTEM MODEL

Our system model is a hybrid network architecture com-
posed of a VANET, VANET’s infrastructure (4G/5G base
station, RSU), and Vehicular Cloud (VC). We assume all
vehicles in VANET are equipped with an On-Board Unit
(OBU). So that they can communicate with each other and
with the infrastructure, as stated in Figure 1. We propose a
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Fig. 1: System architecture.

centralized gateway selection system that aims to identify the
gateways and allocate them to vehicles needing of Internet
access. Unlike the decentralized strategies in literature, the
centralized mechanism reduces the overload situation when
there are many nodes in the network.

Our proposed system is based on the VC, which consists
of two servers, namely Registrar and Discovery servers. The
Registrar Server accumulates the necessary information about
vehicles movements and the infrastructure network. It calcu-
lates the Link Connectivity Duration (LCD) between them.
On the other hand, the proposed system is integrated into the
discovery server. Our proposed algorithm is an extension of
our previous study [13]. In the previous work, we assumed that
the gateways are public transport buses connected directly to
the Internet. Based on this assumption, we used reinforcement
learning to discover a suitable gateway for source vehicles. In
our current work, we aim to make our algorithm more general
and comprehensive. The development and expansion is the use
of a mechanism to identify the gateways instead of assuming
their existence. Therefore, our proposed system consists of two
phases:

1) Gateways Identification: we use Integer Programming
(IP) to identify the gateways.

2) Gateway Selection: we adopt reinforcement learning to
allocate a suitable gateway for ordinary vehicles.

DOI: 10.36244/ICJ.2022.4.1

mailto:hasanain%40hit.bme.hu?subject=
mailto:huszak%40hit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.4.1


A New Gateway Selection Algorithm Based on Multi-Objective  
Integer Programming and Reinforcement Learning

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 5

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, AUGUST 0000 2

leads us to find a mechanism to identify the gateways. Our
proposed model now consists of two phases instead of one
phase. For the first phase, we utilized the Multi-Objective
Integer Programming (MO-IP) to define the best gateways in
terms of speed, distance from the base station and geographical
distribution. In the second phase, we adopted reinforcement
learning to find the best gateway for client vehicles.

II. RELATED WORKS

Providing a stable connection to VANET infrastructure
is a considerable challenge because of the highly dynamic
environment. In [14], the authors proposed a gateway selection
strategy to access the information and retrieve the data from
the cloud by using epidemic spread routing (ESR). The content
accessibility preference (CAP) model has been used to confine
the greedy behavior of ESR and minimize the data access
delay. In [15], a fuzzy multi-metric qos-balancing gateway
selection algorithm (FQGwS) was proposed to provide stable
communication and increase the link connectivity duration be-
tween the vehicles and LTE infrastructure. The LTE Advanced
eNodeBs are employed as fixed gateways. The communication
between vehicles and the LTE infrastructure is directly or
via a relay gateway. The fuzzy logic is adopted to select
the best gateways based on a blend of metrics like signal
strength, resources occupation, connection lifetime, and QoS
traffic classes. However, this kind of solution uses the reactive
approach where vehicles exchange messages to discover an
appropriate gateway, thus causing a high amount of overhead.
The authors [16] proposed a routing strategy to provide
Internet access for vehicles by selecting a suitable mobile
gateway. The study utilized the vehicle’s characteristics (speed,
direction, position) to determine the best mobile gateway. On
the other hand, it calculates the trust parameter to determine
if the connection is reliable and secure or not. Driss et
al. [17] proposed a gateway selection algorithm based on
heterogeneous VANET and 4G LTE cellular networks. The
study considered that the vehicles fitted with 4G LTE and
IEEE 802.11p-based-VANETs interfaces are potential mobile
gateways. These possible gateways can provide a reliable
connection with the 4G LTE cellular networks to ordinary
vehicles. The study took into account several factors for the
selection of the mobile gateways, such as signal strength,
vehicles’ movement, and path length.

However, even though these kinds of solutions show good
results in terms of packet delivery when applied in a high-
way scenario, they are not suitable in urban scenarios. The
proactive and reactive strategies used in these algorithms can
decrease the throughput when the vehicle numbers increase.
Moreover, there is no optimization in the selection procedure.

In [18], the authors suggested a new gateway selection
system by using multi-objective optimization to address the
issues generated by the previous studies. The system takes into
consideration two contradicting objectives. The first objective
aims to maximize the number of connected vehicles while the
second one aims to minimize the overload of the gateways.

We present a novel model to identify and select the mobile
gateways using Multi-Objective Integer Programming (MO-
IP) and Reinforcement Learning (RL) in urban scenarios.

III. SYSTEM MODEL

Our system model is a hybrid network architecture com-
posed of a VANET, VANET’s infrastructure (4G/5G base
station, RSU), and Vehicular Cloud (VC). We assume all
vehicles in VANET are equipped with an On-Board Unit
(OBU). So that they can communicate with each other and
with the infrastructure, as stated in Figure 1. We propose a

Discovery Server Registrar server

Fig. 1: System architecture.

centralized gateway selection system that aims to identify the
gateways and allocate them to vehicles needing of Internet
access. Unlike the decentralized strategies in literature, the
centralized mechanism reduces the overload situation when
there are many nodes in the network.

Our proposed system is based on the VC, which consists
of two servers, namely Registrar and Discovery servers. The
Registrar Server accumulates the necessary information about
vehicles movements and the infrastructure network. It calcu-
lates the Link Connectivity Duration (LCD) between them.
On the other hand, the proposed system is integrated into the
discovery server. Our proposed algorithm is an extension of
our previous study [13]. In the previous work, we assumed that
the gateways are public transport buses connected directly to
the Internet. Based on this assumption, we used reinforcement
learning to discover a suitable gateway for source vehicles. In
our current work, we aim to make our algorithm more general
and comprehensive. The development and expansion is the use
of a mechanism to identify the gateways instead of assuming
their existence. Therefore, our proposed system consists of two
phases:

1) Gateways Identification: we use Integer Programming
(IP) to identify the gateways.

2) Gateway Selection: we adopt reinforcement learning to
allocate a suitable gateway for ordinary vehicles.

Fig. 1: System architecture.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, AUGUST 0000 2

leads us to find a mechanism to identify the gateways. Our
proposed model now consists of two phases instead of one
phase. For the first phase, we utilized the Multi-Objective
Integer Programming (MO-IP) to define the best gateways in
terms of speed, distance from the base station and geographical
distribution. In the second phase, we adopted reinforcement
learning to find the best gateway for client vehicles.

II. RELATED WORKS

Providing a stable connection to VANET infrastructure
is a considerable challenge because of the highly dynamic
environment. In [14], the authors proposed a gateway selection
strategy to access the information and retrieve the data from
the cloud by using epidemic spread routing (ESR). The content
accessibility preference (CAP) model has been used to confine
the greedy behavior of ESR and minimize the data access
delay. In [15], a fuzzy multi-metric qos-balancing gateway
selection algorithm (FQGwS) was proposed to provide stable
communication and increase the link connectivity duration be-
tween the vehicles and LTE infrastructure. The LTE Advanced
eNodeBs are employed as fixed gateways. The communication
between vehicles and the LTE infrastructure is directly or
via a relay gateway. The fuzzy logic is adopted to select
the best gateways based on a blend of metrics like signal
strength, resources occupation, connection lifetime, and QoS
traffic classes. However, this kind of solution uses the reactive
approach where vehicles exchange messages to discover an
appropriate gateway, thus causing a high amount of overhead.
The authors [16] proposed a routing strategy to provide
Internet access for vehicles by selecting a suitable mobile
gateway. The study utilized the vehicle’s characteristics (speed,
direction, position) to determine the best mobile gateway. On
the other hand, it calculates the trust parameter to determine
if the connection is reliable and secure or not. Driss et
al. [17] proposed a gateway selection algorithm based on
heterogeneous VANET and 4G LTE cellular networks. The
study considered that the vehicles fitted with 4G LTE and
IEEE 802.11p-based-VANETs interfaces are potential mobile
gateways. These possible gateways can provide a reliable
connection with the 4G LTE cellular networks to ordinary
vehicles. The study took into account several factors for the
selection of the mobile gateways, such as signal strength,
vehicles’ movement, and path length.

However, even though these kinds of solutions show good
results in terms of packet delivery when applied in a high-
way scenario, they are not suitable in urban scenarios. The
proactive and reactive strategies used in these algorithms can
decrease the throughput when the vehicle numbers increase.
Moreover, there is no optimization in the selection procedure.

In [18], the authors suggested a new gateway selection
system by using multi-objective optimization to address the
issues generated by the previous studies. The system takes into
consideration two contradicting objectives. The first objective
aims to maximize the number of connected vehicles while the
second one aims to minimize the overload of the gateways.

We present a novel model to identify and select the mobile
gateways using Multi-Objective Integer Programming (MO-
IP) and Reinforcement Learning (RL) in urban scenarios.

III. SYSTEM MODEL

Our system model is a hybrid network architecture com-
posed of a VANET, VANET’s infrastructure (4G/5G base
station, RSU), and Vehicular Cloud (VC). We assume all
vehicles in VANET are equipped with an On-Board Unit
(OBU). So that they can communicate with each other and
with the infrastructure, as stated in Figure 1. We propose a

Discovery Server Registrar server

Fig. 1: System architecture.

centralized gateway selection system that aims to identify the
gateways and allocate them to vehicles needing of Internet
access. Unlike the decentralized strategies in literature, the
centralized mechanism reduces the overload situation when
there are many nodes in the network.

Our proposed system is based on the VC, which consists
of two servers, namely Registrar and Discovery servers. The
Registrar Server accumulates the necessary information about
vehicles movements and the infrastructure network. It calcu-
lates the Link Connectivity Duration (LCD) between them.
On the other hand, the proposed system is integrated into the
discovery server. Our proposed algorithm is an extension of
our previous study [13]. In the previous work, we assumed that
the gateways are public transport buses connected directly to
the Internet. Based on this assumption, we used reinforcement
learning to discover a suitable gateway for source vehicles. In
our current work, we aim to make our algorithm more general
and comprehensive. The development and expansion is the use
of a mechanism to identify the gateways instead of assuming
their existence. Therefore, our proposed system consists of two
phases:

1) Gateways Identification: we use Integer Programming
(IP) to identify the gateways.

2) Gateway Selection: we adopt reinforcement learning to
allocate a suitable gateway for ordinary vehicles.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, AUGUST 0000 2

leads us to find a mechanism to identify the gateways. Our
proposed model now consists of two phases instead of one
phase. For the first phase, we utilized the Multi-Objective
Integer Programming (MO-IP) to define the best gateways in
terms of speed, distance from the base station and geographical
distribution. In the second phase, we adopted reinforcement
learning to find the best gateway for client vehicles.

II. RELATED WORKS

Providing a stable connection to VANET infrastructure
is a considerable challenge because of the highly dynamic
environment. In [14], the authors proposed a gateway selection
strategy to access the information and retrieve the data from
the cloud by using epidemic spread routing (ESR). The content
accessibility preference (CAP) model has been used to confine
the greedy behavior of ESR and minimize the data access
delay. In [15], a fuzzy multi-metric qos-balancing gateway
selection algorithm (FQGwS) was proposed to provide stable
communication and increase the link connectivity duration be-
tween the vehicles and LTE infrastructure. The LTE Advanced
eNodeBs are employed as fixed gateways. The communication
between vehicles and the LTE infrastructure is directly or
via a relay gateway. The fuzzy logic is adopted to select
the best gateways based on a blend of metrics like signal
strength, resources occupation, connection lifetime, and QoS
traffic classes. However, this kind of solution uses the reactive
approach where vehicles exchange messages to discover an
appropriate gateway, thus causing a high amount of overhead.
The authors [16] proposed a routing strategy to provide
Internet access for vehicles by selecting a suitable mobile
gateway. The study utilized the vehicle’s characteristics (speed,
direction, position) to determine the best mobile gateway. On
the other hand, it calculates the trust parameter to determine
if the connection is reliable and secure or not. Driss et
al. [17] proposed a gateway selection algorithm based on
heterogeneous VANET and 4G LTE cellular networks. The
study considered that the vehicles fitted with 4G LTE and
IEEE 802.11p-based-VANETs interfaces are potential mobile
gateways. These possible gateways can provide a reliable
connection with the 4G LTE cellular networks to ordinary
vehicles. The study took into account several factors for the
selection of the mobile gateways, such as signal strength,
vehicles’ movement, and path length.

However, even though these kinds of solutions show good
results in terms of packet delivery when applied in a high-
way scenario, they are not suitable in urban scenarios. The
proactive and reactive strategies used in these algorithms can
decrease the throughput when the vehicle numbers increase.
Moreover, there is no optimization in the selection procedure.

In [18], the authors suggested a new gateway selection
system by using multi-objective optimization to address the
issues generated by the previous studies. The system takes into
consideration two contradicting objectives. The first objective
aims to maximize the number of connected vehicles while the
second one aims to minimize the overload of the gateways.

We present a novel model to identify and select the mobile
gateways using Multi-Objective Integer Programming (MO-
IP) and Reinforcement Learning (RL) in urban scenarios.

III. SYSTEM MODEL

Our system model is a hybrid network architecture com-
posed of a VANET, VANET’s infrastructure (4G/5G base
station, RSU), and Vehicular Cloud (VC). We assume all
vehicles in VANET are equipped with an On-Board Unit
(OBU). So that they can communicate with each other and
with the infrastructure, as stated in Figure 1. We propose a

Discovery Server Registrar server

Fig. 1: System architecture.

centralized gateway selection system that aims to identify the
gateways and allocate them to vehicles needing of Internet
access. Unlike the decentralized strategies in literature, the
centralized mechanism reduces the overload situation when
there are many nodes in the network.

Our proposed system is based on the VC, which consists
of two servers, namely Registrar and Discovery servers. The
Registrar Server accumulates the necessary information about
vehicles movements and the infrastructure network. It calcu-
lates the Link Connectivity Duration (LCD) between them.
On the other hand, the proposed system is integrated into the
discovery server. Our proposed algorithm is an extension of
our previous study [13]. In the previous work, we assumed that
the gateways are public transport buses connected directly to
the Internet. Based on this assumption, we used reinforcement
learning to discover a suitable gateway for source vehicles. In
our current work, we aim to make our algorithm more general
and comprehensive. The development and expansion is the use
of a mechanism to identify the gateways instead of assuming
their existence. Therefore, our proposed system consists of two
phases:

1) Gateways Identification: we use Integer Programming
(IP) to identify the gateways.

2) Gateway Selection: we adopt reinforcement learning to
allocate a suitable gateway for ordinary vehicles.



A New Gateway Selection Algorithm Based on Multi-Objective  
Integer Programming and Reinforcement Learning

DECEMBER 2022 • VOLUME XIV • NUMBER 46

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, AUGUST 0000 3

A. Gateways Identification Phase
In this phase, we propose an algorithm seeking the gateways

based on different objectives. These objectives ensure that the
gateways are close to the infrastructure with lowest relative
speed and the highest number of neighbors.

Despite the good results achieved by reinforcement learning
to select the best gateways in the previous study compared
to MOO, it cannot be applied to the gateway identification
phase. In the gateway identification phase, all gateways must
be determined by a single decision. Since each gateway has
its own criteria for identifying it, the final outcome of the
reward function becomes too complex and as a result, the agent
becomes confused and unable to learn.

Regarding the run-time complexity, IP is considered NP-
complete and can be affected by the number of variables and
constraints while RL agent should be trained in a simulated
environment. Once the neural network is set up, the decision
is very fast.

The MO-IP technique is employed to optimize the gateways
discovery. It aims to find optimal solution based on different
objectives. The main challenge faced by this type of optimiza-
tion is finding a compromise solution among Pareto optimal
solutions. Pareto optimal solution refers to a non-dominated
solution, which means none of objective functions can be
improved without making the other objective values degrade.
In the rest of this subsection, we formulate the gateways
discovery problem. VANET consists of a set of vehicular nodes
(VNs), which is represented by VN and a set of Base Stations
(BSs), which is represented by the BS . The distance between
a VN i ∈ VN and a BS j ∈ BS is represented by dij , while
the distance between VNs is denoted by di1i2 where i1 ∈
VN and i2 ∈ VN . Let Vi denotes the velocity of the VN
i. Di is the direction of a VN i and Niei is the number of
neighbors located under the VN i range. U (VN ) denotes a
binary vector where U (i) = 1 if the VN i is selected as a
gateway, else U (i) = 0. The relationship between VNs and
BSs is represented through the binary matrix X (VN ,BS). If
and only if the VN i is selected as a Gateway (GW) to the
BS j, then X (i, j) = 1, otherwise X (i, j) = 0. The binary
symmetric matrix Y(VN ,VN ) is defined, if and only if i1 ∈
VN and i2 ∈ VN are Gateways, then y(i1, i2) = 1, otherwise
y(i1, i2) = 0. The gateway identification problem is expressed
by the integer program as follow.

f = α

M∑
j=1

N∑
i=1

dijX (i, j)− β

M∑
j=1

N∑
i=1

ViX (i, j)

− γ
M∑
j=1

N∑
i=1

NieiX (i, j) (1a)

Subject to

∀i ∈ VN , ∀j ∈ BS, dijX (i, j) ≤ r (1b)

∀i ∈ VN ,
∑

i∈VN
U(i) ≤ N (1c)

∀i ∈ VN , ∀j ∈ BS,
∑
j∈BS

X (i, j) = U(i) (1d)

(100− di1i2)U(i1)U(i2) ≤ MY(i1, i2) (1e)

(45− |Di1 −Di2|)U(i1)U(i2) ≤ M(1− Y(i1, i2)) (1f)

∀i1 ∈ VN , ∀i2 ∈ VN ,Y (i1, i2) = Y (i2, i1) (1g)

∀i ∈ VN , ∀j ∈ BS,X (i, j) ∈ {0, 1} (1h)

∀i ∈ VN ,U(i) ∈ {0, 1} (1i)

∀i1 ∈ VN , ∀i2 ∈ VN ,Y(i1, i2) ∈ {0, 1} (1j)

The integer programming model consists of three objective
functions. The first objective aims to find a GW having the
minimum distance with the BS. The second one is used
to find a GW with the highest number of neighbors, while
the third one aims to identify the lowest speed VN as a
GW. Therefore, the utility function (1a). α, β, and γ are
the objectives weights so that α + β + γ = 1. The set of
constraints are explained as follow:

• Constraint (1b) is used to ensures that VN i, if selected
as a GW to a BS j then the distance between i and j
must not exceed the range r.

• Constraint (1c) is used to restrict the number of GWs,
where N is the number of the GWs.

• Constraint (1d) is used to ensure that every GW is
connected to only one BS.

• Constraint (1e) and constraint (1f) represent if-then con-
straint which ensure that if the difference in direction
between GW i1 and GW i2 is less than 45, then the
distance between them must be greater than 100 m. M
is a large number enough to bound the difference. These
two constraints ensure that the GWs moving in the same
direction are not concentrated in a certain area more than
the others.

• Constraint (1g) is used to ensure that the matrix Y is
symmetric.

• Constraints (1h), (1i), and (1j) are integrality constraints.

B. Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning
inspired by human interaction with the environment to learn
skills. The main parts of the RL system are the agent and the
environment. RL is modeled by a Markov decision process.
The concepts (state (S), action (A), reward (R)) represent the
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interaction of the agent with its environment. At each time (t),
the agent senses the environment state (st) and takes action
(at) from the set of available actions causing a state transition
to a new state (st+1). The agent obtains a reward (rt) that
indicates whether the decision taken is correct or not.

The mapping between the action (a) and the state (s) is
denoted by the policy π(a, s). The policy π(a, s) reflects the
behavior of agent during sensing its environment.

The agent seeks the optimal policy π∗(a, s) by maximizing
accumulated discounted reward for each s ∈ S and a ∈ A
expressed in Equation (3):

π∗(a | s) = argmax
π(a|s)

tend
t=t0

γt−t0rt (2)

where γ ∈ (0, 1) is the discount factor and t is the time
horizon. Policy optimization algorithms can be categorized
into two groups which are value-based algorithms and policy-
based algorithms. Although the policy-based algorithms have
better convergence and are more convenient for large action
spaces but they have some shortcomings. Proximal Policy
Optimization (PPO) [19] combines the value-based and policy-
based features by using two neural networks called actor-critic.
The first one, named actor, takes the state (s) as entries and
outputs the policy π(a, s), while the second one, named critic,
optimizes V (s) that measures the goodness of the action
(a). PPO uses the advantage function A(s, a) to reduce the
estimation variance.

PPO uses the Trust Region Policy Optimization(TRPO)
strategy to ensure that the new updated policy never goes far
away from the old policy, making it more stable and reliable.
For these reasons, we adopt PPO algorithm in our proposed
gateway allocation phase, namely RL-agent.

C. Gateway Allocation Phase

After electing a specific set of VNs to be gateways to the
infrastructure in the first phase, the second phase is concerned
with assigning an appropriate GW to each VN that needs
access to the Internet or infrastructure network services. RL
mechanism is adapted to achieve this goal. Three main parts
must be accurately identified to enable the RL agent to sense
the VANET environment and make the right decision: state,
action, and reward.

1) Definition of Observation State: The state (s) will be
created for each VN i that needs access to the infrastructure
network and looks for a connection to a suitable GW j.
It represents the relationship between the VN and all the
identified GWs in terms of geographical location, speed, and
available bandwidth. The state is expressed by the entries as
follow:

X =




Loi1 Lati1 Vi1 θi1 C1

Loi2 Lati2 Vi2 θi2 C2

...
...

...
...

...
Loij Latij Vij θij Cj


 (3)

• Loij , Latij , Vij , and θij represent the difference in
longitude, latitude, velocity, and direction between VN
i and GW j, respectively.

• Cj denotes the available capacity of a GW j.
Since the relationship of the VN to each MG is represented
by five parameters S = (Lo, Lat, V, θ, C), the total number
of entries to represent the state is |S| · |GW |,where |S| is the
number of parameters used to describe a state, while |GW |
is the number of MGs.

2) Definition of Agent Action and Rewards: The action
space represents all possible actions. Since the agent’s action
is to assign an appropriate GW to each VN trying to reach
the infrastructure, the action space represents all GWs. Action
a = {a1a2a3 . . . an}, where a1 represents the selection of
GW1 and an stands for the selection of GWn. The reward
function is assigned based on two metrics: the first one is the
link connectivity duration between the VN and GW, whereas
the second one is the GW capacity. The first metric motivates
the agent to find a GW with the highest LCD for each VN,
while the second one aims to reduce the VNs connected to the
same GW. Multi-Objective Reinforcement Learning (MORL)
is adapted to set the reward function by finding a compromise
between the objectives. The reward function is expressed as:

R = w1 · lcdij + w2 · Cj (4)

where lcdij denotes the link connectivity duration value
between VN i and MG j, while Cj represents the available
GW j capacity. Parameters w1 and w2 take values between 0
and 1 depending on the importance of the objectives so that
w1 + w2 = 1. The reward value is positive when the action is
valid otherwise, the reward is negative. The positive reward
ranges in value between 0 and 20, while the negative reward
is (-4). The negative reward is applied in two cases:

1) The GW allocated to a VN is out of its coverage range.
2) The allocated GW does not have enough traffic amount.
As mentioned above, the reward value was adopted after

training the agent several times with different reward values
because the assumed value showed a faster response from the
agent to learn.

3) Agent parameters: The GW allocation system depends
mainly on the dataset collected by the registrar server. The
dataset consists of a huge number of snapshots collected from
the VANET environment. The process of adding a snapshot
to the dataset takes place after defining the GWs in the first
phase. The snapshot is divided into a number of entries so that
the number of entries in each snapshot is equal to the number
of VNs. Each entry represents the relationship between each
VN with all the GWs in terms of the Cartesian coordinates,
speed, LCD, and the available bandwidth for each GW. PPO is
employed to maximize the GWs selection return. The reward
r is a multi-objective reward in which the agent tends to find a
GW for a VN with the maximum LCD and minimum number
of VNs connected to it. The dataset is employed to train the
RL agent.
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IV. RESULTS

The simulation results are presented to show the efficiency
of our proposed algorithm. Simulations are implemented by
combining Python programming language, Urban Mobility
simulator (SUMO), and Open Street Map (OSM). SUMO
is used to simulate the vehicles’ mobility [20], while OSM
is used to extract real-world map data, which makes the
simulation more realistic [21]. Gurobi Optimizer is executed
to solve the MO-IP problem used in the gateway identification
phase [22], while Baseline3 library is used to implement the
RL problem used in gateway allocation phase [23]. The entire
simulation parameters are listed in Table I.

TABLE I: Simulation parameters.

Parameters Setting

Simulation area 1500 m X 1500 m

Transmission Range 500 m

Vehicles speed 0-20 m/s

Vehicles Number 120-200

The nature of the roads in urban areas in terms of the spread
of intersections, speed limitation, and traffic jams makes them
more challenging than the highway environment. It can be
considered a true measure of algorithms performance. The
number of VNs deployed in the simulation network is 120-
220. The MO-IP algorithm used in the gateways identification
phase is evaluated and compared with the Fuzzy Multi-metric
QoS-balancing Gateway Selection Algorithm (FQGwS) [15]
which uses Received Signal Strength (RSS) metric between the
VNs and the infrastructure to discover the potential gateways
candidates. Three metrics have been used for the performance
evaluation in which metric 1 represents the number of GWs’
neighbors, metric 2 represents the velocity of GWs, and
metric 3 represents the connection lifetime duration between
GWs and VANET’s infrastructure. Figure 2 which represents
the relationship between metric 1 and metric 2 shows that
our proposed algorithm has a good trade-off compared to
FQGwS algorithm by finding GWs with low speed and a
high number of neighbors. On the other hand, Figure 3 which
represents the relationship between metric 1 and metric 3
shows our proposed algorithm has better results in terms of
choosing GWs with the lowest speed in comparison with
FQGwS, but for the connection lifetime metric, the results
are approximately similar. In Figure 4, the 3D diagram is
depicted, which combines all the metrics. It should be noted,
the results plotted in these figures are collected from 10 times
of executions for different scenarios.

In the gateway allocation phase, Reinforcement Learning
agent (RL-agent) performance is evaluated based on the num-
ber of connected VNs and the VNs distribution among GWs.
All approaches are simulated and executed under the same
conditions. Each scenario is executed and evaluated multiple
times so that each point in the plot shows the mean of 10
executions with a variance representing the error in the error-
bar plots. Two case studies are applied to make sure our algo-
rithm is efficient under different conditions so that the GWs
are either with a bandwidth limitation constraint or without.

Fig. 2: Number of GWs neighbors.

Fig. 3: connection lifetime between GWs and BSs.

The bandwidth constraint limits number of VNs per GW. We
set the GW capacity number to 10. Figure 6 and 5 show that
the RL-agent has better performance in increasing the number
of connected VNs in comparison with FQGwS and DIS-based
algorithms. Without bandwidth limitation constraint, RL-agent
causes inequality and a wide variation in the distribution of
VNs over the MGs, as shown in Figure 7. Figure 8 shows
that the RL-agent is not affected by capacity constraint, and it
has a higher efficiency in distributing VNs compared to other
solutions.

Finally, the connection lifetime between VNs and the infras-
tructure is evaluated. The connection lifetime is the minimum
of (CONV N2GW , CONGW2BS) where CONV N2GW repre-
sents the connection lifetime between the VN and the GW
and CONGW2BS denotes the connection lifetime between the
GWs and the infrastructure. In figure 9, the connection lifetime
rate of the proposed algorithm (GWS-MORL) is higher than
in case of other algorithms. It is also not affected by the
limitation constraint of GWs capacity when the number of
vehicles increases, unlike the other algorithms in which the
connection lifetime rate decreases, as presented in figure 10.

Fig. 3: connection lifetime between GWs and BSs.

Fig. 2: Number of GWs neighbors.
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high number of neighbors. On the other hand, Figure 3 which
represents the relationship between metric 1 and metric 3
shows our proposed algorithm has better results in terms of
choosing GWs with the lowest speed in comparison with
FQGwS, but for the connection lifetime metric, the results
are approximately similar. In Figure 4, the 3D diagram is
depicted, which combines all the metrics. It should be noted,
the results plotted in these figures are collected from 10 times
of executions for different scenarios.

In the gateway allocation phase, Reinforcement Learning
agent (RL-agent) performance is evaluated based on the num-
ber of connected VNs and the VNs distribution among GWs.
All approaches are simulated and executed under the same
conditions. Each scenario is executed and evaluated multiple
times so that each point in the plot shows the mean of 10
executions with a variance representing the error in the error-
bar plots. Two case studies are applied to make sure our algo-
rithm is efficient under different conditions so that the GWs
are either with a bandwidth limitation constraint or without.
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The bandwidth constraint limits number of VNs per GW. We
set the GW capacity number to 10. Figure 6 and 5 show that
the RL-agent has better performance in increasing the number
of connected VNs in comparison with FQGwS and DIS-based
algorithms. Without bandwidth limitation constraint, RL-agent
causes inequality and a wide variation in the distribution of
VNs over the MGs, as shown in Figure 7. Figure 8 shows
that the RL-agent is not affected by capacity constraint, and it
has a higher efficiency in distributing VNs compared to other
solutions.

Finally, the connection lifetime between VNs and the infras-
tructure is evaluated. The connection lifetime is the minimum
of (CONV N2GW , CONGW2BS) where CONV N2GW repre-
sents the connection lifetime between the VN and the GW
and CONGW2BS denotes the connection lifetime between the
GWs and the infrastructure. In figure 9, the connection lifetime
rate of the proposed algorithm (GWS-MORL) is higher than
in case of other algorithms. It is also not affected by the
limitation constraint of GWs capacity when the number of
vehicles increases, unlike the other algorithms in which the
connection lifetime rate decreases, as presented in figure 10.
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the RL-agent has better performance in increasing the number
of connected VNs in comparison with FQGwS and DIS-based
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The bandwidth constraint limits number of VNs per GW. We
set the GW capacity number to 10. Figure 6 and 5 show that
the RL-agent has better performance in increasing the number
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Fig. 4: Projection of metric 1, metric 2, and metric 3.

Fig. 5: Number of VNs connected to GWs.

Fig. 6: Number of VNs connected to limited bandwidth GWs.

V. CONCLUSION

In this paper, a new gateway selection algorithm based
on multi-objective integer programming and reinforcement
learning is presented. The proposed system is a central

Fig. 7: VNs distribution among GWs.

Fig. 8: VNs distribution among limited bandwidth GWs.

Fig. 9: VNs distribution among GWs.

algorithm assisted by vehicular cloud. System architecture
consists of two phases. In the first phase, multi-objective
Integer programming is used to elect the best gateways
depending on their speed, direction, and proximity to the base
stations. The reinforcement learning technique is employed in
the second phase to allocate one of elected gateways for each
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rithm is efficient under different conditions so that the GWs
are either with a bandwidth limitation constraint or without.

Fig. 2: Number of GWs neighbors.

Fig. 3: connection lifetime between GWs and BSs.

The bandwidth constraint limits number of VNs per GW. We
set the GW capacity number to 10. Figure 6 and 5 show that
the RL-agent has better performance in increasing the number
of connected VNs in comparison with FQGwS and DIS-based
algorithms. Without bandwidth limitation constraint, RL-agent
causes inequality and a wide variation in the distribution of
VNs over the MGs, as shown in Figure 7. Figure 8 shows
that the RL-agent is not affected by capacity constraint, and it
has a higher efficiency in distributing VNs compared to other
solutions.

Finally, the connection lifetime between VNs and the infras-
tructure is evaluated. The connection lifetime is the minimum
of (CONV N2GW , CONGW2BS) where CONV N2GW repre-
sents the connection lifetime between the VN and the GW
and CONGW2BS denotes the connection lifetime between the
GWs and the infrastructure. In figure 9, the connection lifetime
rate of the proposed algorithm (GWS-MORL) is higher than
in case of other algorithms. It is also not affected by the
limitation constraint of GWs capacity when the number of
vehicles increases, unlike the other algorithms in which the
connection lifetime rate decreases, as presented in figure 10.
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IV. RESULTS

The simulation results are presented to show the efficiency
of our proposed algorithm. Simulations are implemented by
combining Python programming language, Urban Mobility
simulator (SUMO), and Open Street Map (OSM). SUMO
is used to simulate the vehicles’ mobility [20], while OSM
is used to extract real-world map data, which makes the
simulation more realistic [21]. Gurobi Optimizer is executed
to solve the MO-IP problem used in the gateway identification
phase [22], while Baseline3 library is used to implement the
RL problem used in gateway allocation phase [23]. The entire
simulation parameters are listed in Table I.

TABLE I: Simulation parameters.
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choosing GWs with the lowest speed in comparison with
FQGwS, but for the connection lifetime metric, the results
are approximately similar. In Figure 4, the 3D diagram is
depicted, which combines all the metrics. It should be noted,
the results plotted in these figures are collected from 10 times
of executions for different scenarios.

In the gateway allocation phase, Reinforcement Learning
agent (RL-agent) performance is evaluated based on the num-
ber of connected VNs and the VNs distribution among GWs.
All approaches are simulated and executed under the same
conditions. Each scenario is executed and evaluated multiple
times so that each point in the plot shows the mean of 10
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rithm is efficient under different conditions so that the GWs
are either with a bandwidth limitation constraint or without.
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The bandwidth constraint limits number of VNs per GW. We
set the GW capacity number to 10. Figure 6 and 5 show that
the RL-agent has better performance in increasing the number
of connected VNs in comparison with FQGwS and DIS-based
algorithms. Without bandwidth limitation constraint, RL-agent
causes inequality and a wide variation in the distribution of
VNs over the MGs, as shown in Figure 7. Figure 8 shows
that the RL-agent is not affected by capacity constraint, and it
has a higher efficiency in distributing VNs compared to other
solutions.

Finally, the connection lifetime between VNs and the infras-
tructure is evaluated. The connection lifetime is the minimum
of (CONV N2GW , CONGW2BS) where CONV N2GW repre-
sents the connection lifetime between the VN and the GW
and CONGW2BS denotes the connection lifetime between the
GWs and the infrastructure. In figure 9, the connection lifetime
rate of the proposed algorithm (GWS-MORL) is higher than
in case of other algorithms. It is also not affected by the
limitation constraint of GWs capacity when the number of
vehicles increases, unlike the other algorithms in which the
connection lifetime rate decreases, as presented in figure 10.
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vehicle in need of the infrastructure services. Two agents
are created based on the objectives’ preferences. Compared
with the existing mobile gateway selection algorithms,
the simulation results show that the proposed approach is
effective in terms of increasing the number of connected
vehicles, distributing the vehicular nodes among gateways,
and increasing the connection lifetime between the source
vehicles and the infrastructure.
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[13] H. Alabbas and Á. Huszák, “Reinforcement learning based gateway
selection in vanets,” International journal of electrical and computer
engineering systems, vol. 13, no. 3, pp. 195–202, 2022.

[14] A. Tolba, “Content accessibility preference approach for improving
service optimality in internet of vehicles,” Computer Networks, vol. 152,
pp. 78–86, 2019, DOI: 10.1016/j.comnet.2019.01.038.

[15] G. El Mouna Zhioua, N. Tabbane, H. Labiod, and S. Tabbane, “A fuzzy
multi-metric qos-balancing gateway selection algorithm in a clustered
vanet to lte advanced hybrid cellular network,” IEEE Transactions
on Vehicular Technology, vol. 64, no. 2, pp. 804–817, 2014, DOI:
10.1109/TVT.2014.2323693.

[16] B. Sharef, R. Alsaqour, M. Alawi, M. Abdelhaq, and E. Sundararajan,
“Robust and trust dynamic mobile gateway selection in heterogeneous
vanet-umts network,” Vehicular communications, vol. 12, pp. 75–87,
2018, DOI: 10.1016/j.vehcom.2018.02.002.

[17] D. Abada, A. Massaq, A. Boulouz, and M. B. Salah, “An adaptive
vehicular relay and gateway selection scheme for connecting vanets to
internet,” Emerging Technologies for Connected Internet of Vehicles and
Intelligent Transportation System Networks: Emerging Technologies for
Connected and Smart Vehicles, vol. 242, p. 149, 2019.

[18] S. Retal and A. Idrissi, “A multi-objective optimization system for
mobile gateways selection in vehicular ad-hoc networks,” Computers
& Electrical Engineering, vol. 73, pp. 289–303, 2019.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[20] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[21] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org , 2017.

[22] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
http://www.gurobi.com, 2021.

[23] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/stable-
baselines3, 2019.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[25] H. Dong, H. Dong, Z. Ding, S. Zhang, and Chang, Deep Reinforcement
Learning. Springer, 2020.

[26] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning:
A comprehensive overview,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 45, no. 3, pp. 385–398, 2014, DOI:
10.1109/TSMC.2014.2358639.



A New Gateway Selection Algorithm Based on Multi-Objective  
Integer Programming and Reinforcement Learning

DECEMBER 2022 • VOLUME XIV • NUMBER 410

INFOCOMMUNICATIONS JOURNAL

Fig. 10: VNs distribution among limited bandwidth GWs.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, AUGUST 0000 7

Fig. 10: VNs distribution among limited bandwidth GWs.

vehicle in need of the infrastructure services. Two agents
are created based on the objectives’ preferences. Compared
with the existing mobile gateway selection algorithms,
the simulation results show that the proposed approach is
effective in terms of increasing the number of connected
vehicles, distributing the vehicular nodes among gateways,
and increasing the connection lifetime between the source
vehicles and the infrastructure.
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∗Széchenyi István University, Győr, Hungary
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Abstract—The updated range of models of smart glasses has
expanded the availability of augmented reality (AR) technology
in a way that opens them up to several applications. The first
prototypes have been replaced by new models and vendors offer
off-the-shelf solutions. E-health and medical applications have
been in focus from the start. Furthermore, the roll-out of 5G
technology would enable almost real-time, high-speed and low-
latency communication, which would expand the potential uses
and ideas. This paper gives a short overview of the current
state, focusing on medical applications using smart glasses. The
HoloLens glasses were evaluated regarding latency and data rates
by using WiFi and the 5G campus network of the university.
Results show that the HoloLens may be used in education,
training and teleassistance; however, assisting latency-sensitive
tasks that require a reliable network connection, ergonomic
design, and privacy issues still remain a problem.

Index Terms—5G, HoloLens, Telemedicine, Augmented Real-
ity, Smart glasses

I. INTRODUCTION

Google presented their AR smart glasses in 2014, where
computer generated information (text or graphics) could be
superimposed on physical objects in the field of view. This ap-
plication was considered a human computer interaction (HCI)
issue that focused on the multimodal interaction methods and
problems (i.e., touch, touchless and hand-held), and design
challenges of input and information manipulation. Touch input
can be further divided into on-device and on-body, while
touchless input can be classified into hands-free and freehand
[1]. The user interface plays a significant role in usability, and
thus, in the adaptation of new technology [2].

Technology assisted solutions for healthcare ecosystems
could address patient-specific needs, but adaptation to it re-
quires time, especially from the patient side [3]–[5]. A 2016
study revealed the importance of different drivers for accep-
tance, such as usability, functional benefits, branding/fashion
issues, individual differences, social norms, and privacy con-
cerns [6], [7]. Results showed that the greater concern is of
other people’s privacy rather than their own.

A. Clinical Applications

The main goals of introducing smart glasses in clinical
applications are: improving patient care, increasing efficiency,
and decreasing healthcare costs [8], [9]. Web-connected smart
glasses can present data, record images, and videos that are ac-
companied by audio communication. A 2015 article reviewed
71 cases using smart glasses in health care, highlighting their
limitations [10]. The first applications included hands-free

documentation; telemedicine meetings and diagnostics; live
broadcasting (educational purposes); electronic record storage;
and updates. Qualitative evaluation of applications is needed
after adjusting to the special needs of the subsections of
medicine. Further problems need to be addressed, such as
social interactions, physiological and psychological problems,
and legal issues [11]. Communication with the patients is a key
driver of passive trust in technology and of trust in caregivers
[12], [13].

In neurology, smart glasses were tested during ward rounds
on 103 neurocritical care patients. Both human supervision
and telepresence assistance were available. In 90% of the
cases, excellent overall reliability was observed. There was
a wide user acceptance and high satisfaction rate for virtual
ward rounds [14].

Another study investigated the applicability and accuracy of
smart glasses for an AR-based neurosurgical navigation. 3D
MRI computer graphics were projected on to the smart glasses,
using markers, which allowed for accurate navigation. The test
involved two patients with brain tumors located on the surface
of the brain. Hands-free neuronavigation inside the operative
field was maintained and computer graphics of brain tumors
were clearly visualized during surgery [15].

In anatomic pathology the HoloLens was tested for virtual
annotation during autopsies, viewing 3D various pathology
specimens, navigating slide images, telepathology, as well
as real-time pathology-radiology correlation [16]. Residents
performing autopsies were remotely instructed. The device
was found to be comfortable to wear, easy to use, it provided
sufficient computing power, and supported high-resolution
imaging.

The HoloLens was compared to a mobile handheld tablet
used in anatomy education of medical students. Both methods
were beneficial; however, in the case of HoloLens, 25% more
subjects reported dizziness [17]. In general, AR/VR-based
head-mounted device technology was seen as a key solution
in the future in medical education [18].

Another study evaluated the HoloLens as a potential al-
ternative to conventional monitors in endoscopic surgery and
minimally invasive surgery. Performance by novice surgeons
was improved. The device was widely accepted as a surgical
visual aid, specifically as a feasible alternative to the con-
ventional setups with the possibility of aligning the surgeon’s
visual-motor axis [19].

Promotion of the integration of VR, AR and MR is im-
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